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LETTER TO THE EDITOR

A new orthogonalization procedure with an extremal
property

S Chaturvedi†, A K Kapoor‡ and V Srinivasan§
School of Physics, University of Hyderabad, Hyderabad - 500 046, India

Received 10 February 1998

Abstract. Various methods of constructing an orthonomal set out of a given set of linearly
independent vectors are discussed. Particular attention is paid to the Gram–Schmidt and the
Schweinler–Wigner orthogonalization procedures. A new orthogonalization procedure which,
like the Schweinler–Wigner procedure, is democratic and is endowed with an extremal property
is suggested.

Constructing an orthonormal set out of a given set of linearly independent vectors is
an age old problem. Among the many possible orthogonalization procedures, the two
algorithmic procedures that have been extensively discussed and used in the literature are
(a) the familiar Gram–Schmidt procedure [1] and (b) a procedure which is referred to as the
Schweinler–Wigner procedure [2], particularly in the wavelet literature [3]. (This method is
known among the chemists as the Lowdin orthogonalization procedure [4]. Mathematicians
attribute it to Poincaŕe. Schweinler and Wigner themselves trace its origin to a work of
Landshoff [5]. Eschewing the question of historically correct attribution, we shall continue
to refer to it as the Schweinler–Wigner procedure.) An intrinsic difference between the two
procedures is that while the Gram–Schmidt procedure, by its very nature, requires one to
select the linearly independent vectors sequentially, the Schweinler–Wigner procedure treats
all the members of the set of linearly independent vectors democratically. The significance
of the work of Schweinler and Wigner lies not in introducing a new orthogonalization
method, the method was already known, but rather in introducing a positive quantitym, to
be defined shortly, which discriminates between various orthogonalization procedures. They
showed thatm is a maximum for the Schweinler–Wigner basis. In this letter we pose and
answer the question as to what is the orthogonalization procedure which minimizesm. This
new orthogonalization procedure, like the Schweinler–Wigner procedure, also turns out to
be completely democratic in that it treats all the linearly independent vectors on the same
footing. The quantitym was introduced by Schweinler and Wigner in a some whatad hoc
manner. We reformulate their procedure in a way so that the quantitym appears naturally
and can be useful in a wider context than that for which it was introduced. In particular,
this reformulation enables us to quantify the notion of an orthonormal basis which brings
any Hermitian operator into a maximally off-diagonal form.
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Let v1, . . . , vN denote a set ofN linearly independent vectors. LetM denote the
associated Gram matrix:Mij = (vi, vj ). M is a positive definite Hermitian matrix. Define

z = vS (1)

whereS is an invertible matrix. Then

(zi, zj ) = (S†MS)ij . (2)

Requiring thatz be an orthonormal basis amounts to requiring that

S†MS = I i.e. M−1 = SS†. (3)

Each suchS defines an orthogonalization procedure. Two standard choices ofS are as
follows.

(1) Schweinler–Wigner procedure. This procedure corresponds to the choice

S = UP−1/2U † (4)

whereU is the matrix which bringsM to a diagonal formP

U †MU = P. (5)

With this choice ofS, which corresponds to taking the Hermitian square root of the matrix
M, one has

z = vUP−1/2U †. (6)

On definingw = zU , one obtains the Schweinler–Wigner basis

w = vUP−1/2. (7)

(2) Gram–Schmidt orthogonalization procedure. In this procedureS is chosen to be an
upper triangular matrixT satisfying

M−1 = T T † (8)

and the Gram–Schmidt basis is given by

y = vT . (9)

The two orthonormal basesw andy discussed above are related to each other by the
following unitary transformation

y = wV (1) (10)

whereV (1) is given by

V (1) = P 1/2U †T . (11)

Schweinler and Wigner introduced a quantitym(z) as follows

m(z) =
∑
k

(∑
l

|(zk, vl)|2
)2

(12)

wherez is any orthonormal basis. They further showed thatm(z) attains its maximum
value Tr(M2) for z = w.

mmax= Tr(M2) = m(w). (13)

For any other basisz, related tow by a unitary transformationV ,

z = wV (14)
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the value ofm(z) is given by

m(z) =
∑
k

((V †PV )kk)
2. (15)

In particular, for the Gram–Schmidt basisy, one finds that

m(y) =
∑
k

((T †T )−1
kk )

2. (16)

A natural question to ask is what is the orthonormal basis which minimizesm(z). On
applying the Cauchy inequality to (15), it follows that

m(z) =
∑
k

((V †PV )kk)
2 > 1

N

(∑
k

(V †PV )kk

)2

> 1

N
(TrM)2. (17)

The equality sign holds if and only if(V †PV )kk = c independent ofk, i.e.∑
l

Pl|Vkl|2 = 1

N
(P1+ · · · + PN). (18)

This requires that

|Vkl|2 = 1

N
(19)

for all k andl. The matrix elements of the unitary matrixV (2) satisfying the above equation
are thus given by

V
(2)
kl =

1√
N

exp

[
2π i(k − 1)(l − 1)

N

]
. (20)

The matrixV (2) is thus just the character table of the cyclic groupCN . Thus the basis
x, for which m(z) attains its minimum valuemmin = (1/N)(TrM)2, is related to the
Schweinler–Wigner basisw as follows:

xl = 1√
N

∑
k

exp

[
2π i(k − 1)(l − 1)

N

]
wk. (21)

This basis also treats all the linearly independent vectorsv democratically like the
Schweinler–Wigner basis.

The quantitym(z) appears to have been introduced by Schweinler and Wigner in a rather
ad hocway. At least no particular motivation for introducing it appears in their work. We
now reformulate their work in a way that this quantity appears naturally. Consider the
Hermitian operator

M =
∑
k

vkv
†
k. (22)

In an arbitrary orthonormal basisz one can write

Tr(M2) =
∑
lm
l 6=m

|(zl,Mzm)|2+
∑
l

|(zl,Mzl)|2. (23)

The second term on the right-hand side is easily seen to be the same asm(z) in (12). From
this perspective it is immediately obvious that the basis which maximizesm(z) is the one
in whichM is diagonal. This is just the Schweinler–Wigner basis as can also be directly
verified. Thus the Schweinler–Wigner basis is simply the eigenbasis of the operatorM and
if the eigenvalues ofM are all distinct then this basis is essentially unique. Furthermore,



L370 Letter to the Editor

since Tr(M2) is independent of the choice of basis, it is clear from(23) that the basis which
minimizesm(z) maximizes

n(z) ≡
∑
lm
l 6=m

|(zl,Mzm)|2. (24)

The quantityn(z) therefore provides a quantitative measure of the off-diagonality of the
operatorM in the z basis. The new orthonormal basis proposed in this work is thus the
one in whichM is maximally off-diagonal.

We are grateful to Professors G S Agarwal and Vipin Srivastava, and to Dr M Durgaprasad
for numerous discussions.
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